B h

-

Frequency-Domain Lattice Boltzmann (FreqD-LBM)

2

Simulation Software
Quick Reference Guide
1. Scope.

The software implements frequency-domain lattice-Boltzmann simulation method described in the article
The Frequency-Domain Lattice Boltzmann Method (FreqD-LBM): A Versatile Tool to Predict the QCM
Response Induced by Structured Samples by Diethelm Johannsmann, Paul Hausner, Arne Langhoff,
Christian Leppin, Ilya Reviakine, and Viktor Vanoppen. The paper currently is under review. It is referred
to in this manual as the “FLBM paper”. The details of the method and its applications are explained in the
article. Here, the focus is on how to use the software in practice.

The software is written in Python.
FreqD-LBM is an open-source software under MIT license (en.wikipedia.org/wiki/MIT License)

2. Requirements

The software has been tested in Python 3.9 and 3.11.5 on personal computers running Windows 10 and
Windows 11. It requires the pandas, numpy, matplotlib, scipy, tkinter, numba, Imfit, configparser, queue,
and tooltip libraries, which are not native Python libraries, so they are not by default included in the
standard Python distribution and must be installed separately. The authors recommend using the anaconda
python distribution (available from https://www.anaconda.com/download) and installing the requirements
by running the setup.py script. This will install the pip package manager and all necessary libraries. If
you encounter any problems installing pip, please refer to the pip documentation
(https://pip.pypa.io/en/stable/installation/#get-pip-py). In case of specific errors during the installation of
certain necessary libraries, please refer to the documentation of the individual library. A missing library
can also be installed (if pip is already installed) by typing pip install <library name> in the console. An
Internet connection is required.

3. Software Organization

The software consists of three parts (Fig. 1): the core libraries (collected under \Lib) that can be accessed
via a GUI (FLBM.py, fblmn.py, fblmpar.py) or via a wrapper (Main_FreqDLBM.py). The GUI helps the
user define simulation parameters (SPs). In the case of the wrapper (Main_FreqDLBM), the user
directly edits the code defining the SPs. SPs are then passed to the simulation core (SingleSim). In the
case of the GUI, SPs are passed to the simulation via a file that is named <yyy-mm-dd-
hh_mm_ss.flbmsym.npy> stored in the default simulation subfolder (flbm) or in the folder of the user’s
choice. The user has the option to run the simulation in a serial or in a parallel mode. The file with the

simulation parameters is saved and can be used to re-run the exact same simulation if desired. This is

accomplished by using the command

“python fblmn.py flbm\yyy-mm-dd-hh mm_ss.flbmsym.npy” (in serial mode)

or

“python fblmpar.py flbom\yyy-mm-dd-hh mm_ss.flbmsym.npy” (in parallel mode).

(assuming the default location). The wrapper directly passes SPs to SingleSim and runs in a serial mode

only. Both the GUI and the wrapper have provisions for displaying simulation progress plots (see below).

In the GUI, there is also an option to display simulation results.

f
GUI
Results
User /1 | gisplay UITr.:“
o

Results
display

Parallel? Plots GUI

/" Main_FreqDLBM \

Spyder
Plots

-

/

SingleSim [SingleSim }

Figure 1: Software Organization

4. Running the software

The software can be run from the command line by typing “python FLBM.py” in the folder containing the

FLBM.py file.

The software can also be run from within
Spyder. For the GUI version, load
FLBM.py into Spyder, and configure
external shell execution (in the Spyder
main menu, press “Run” and
“Configuration per file”; then select “Run
file with custom configuration” and
“execute in an external system console”.

The wrapper, Main_FreqDLBM.py, can
be run directly from Spyder, but the GUI
cannot.

5. Defining simulation
parameters.
5.1 GUI

Basic simulation parameters are grouped

/ Run configuration per file

Select a run configuration:

C:\Users\llyaReviakine\Documents\IReviakine\FLBM\FLEM 6.8\FLBM.py

O Run file with default configuration

® Run file with custom configuration
Console

(O Execute in current console
(O Execute in a dedicated console

® Execute in an external system terminal

[Interact with the Python console after execution

[J Command line options:

0K Run Cancel

Figure 2: Configuring Spyder for running FLBM in an external shell.

into frames: the parameters that apply to the entire simulation (Figure 3), bulk and resonator parameters
(Figure 6), and sphere(s) parameters (Figure 7). Furthermore, there is a set of advanced parameters that

can be accessed through the menu “Advanced SimPars”.

Simulation Parameters
Problem

| Stiff Particles |

Format

| Mazxwell v |

Grid factor, Rsph/X fAx, nm

Sim Type

" Regular

Overtones

rFr3rswVvyr o

Averages

2.50 5
Progress Plots
Run Parallel

* Parallel I Simulation

Figure 3: Simulation Parameters frame

Problem Type: Currently implemented are the simulations of “soft spheres” modelled as regions of

increased shear stiffness, and “stiff spheres” modelled as oscillating boundaries. The implementation of

roughness, film resonance, etc., are left for the future.

Format: Specifies how the viscoelasticity of the sphere/surface contact is defined. Three options are

available: |n|, tan(8) or J',J"" with their corresponding exponents, 8’, 8", and Maxwell, with ||, .

Viscoelastic parameters have their usual meaning (see). In

the case of the format specified by Maxwell formalism, |n| G
G”

is used to calculate shear elastic modulus at infinite
frequency, while the relaxation time T separates frequency
ranges with liquid-like from ranges with solid-like
behavior (Fig. 4).

e e e e W

Grid Factor: simulation grid resolution in fractions of the
sphere radius, Rsph. The recommended value is 5, but a w=1/s Angninr Fraquency

value of 3 is sufficient for approximate simulations. Grid Figure 4: Maxwell viscoelasticity format
resolution in nm is displayed in the adjacent field.

Averages: the number of times the simulation is repeated with different particle positions in the
simulation box. The recommended number is 5.

Overtones to be included in the simulation. At least one overtone is required.

Simulation type (SimType): Regular or Parallel. For Parallel simulations, the choice to display progress
plots is also offered. This is useful for diagnostics but this option is currently slow. It is recommended that
parallel simulations are run without progress plots. Progress plot files are saved in the tmpplot subfolder
and can be accessed at a later time. In the future, a separate display option for browsing those plots will be
implemented.

Run simulation button will start the simulation in a new console. A file containing simulation parameters
is created, that is named <yyy-mm-dd-hh _mm_ss.flbmsym.npy>. It is stored in the default simulation
subfolder (flbm) or in the folder of the user’s choice. It is passed to flbmsym.py or flbmsympar.py
depending on whether the simulation is run in the serial mode or in the parallel mode. The progress of
simulation is monitored in the Simulation Progress frame that opens at the bottom of the GUI window
(Figure 5), and the plots frame to the right. The plots frame will display the ring-in process plots, sphere
motional parameter plots, and, finally, the velocity and density profiles, such as those shown in Figure 3.4
and Figure 3.5 of the FLBM paper. Simulation parameters of the current step are displayed above each
plot.

Simulation Progress

Plot Parameter: Average n Dx,nm p, g/em’ Radius, nm Truncation Number Il tan(8) B B" Coverage

ol Current step:

Previous step:

ol Current step:

Previous step:

r Current step:

Previous step:

Figure 5: Simulation Progress frame.

! Johannsmann, D. Viscoelastic analysis of organic thin films on quartz resonators. Macromol. Chem. Phys. 200,
501-516 (1999); Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research. (Springer Berlin
Heidelberg, New York, NY, 2014).

In the case of the simulations run in parallel, the number of simultaneously running simulations depends
on the number of processor cores. Only one of them can be selected for plotting at any given time,
selected using a radio button in the Simulation Progress frame (Figure 5).

The file with the simulation parameters can be used to re-run the exact same simulation if desired. This is
accomplished by using the command

“python fblmn.py flbm\ yyy-mm-dd-hh mm_ss.flbmsym.npy” (in serial mode)
or

“python fblmpar.py flbm\ yyy-mm-dd-hh mm_ss.flbmsym.npy” (in parallel mode).

Bulk and Senzor Parameters
0, MHz Zg, kg/(m’s) p lig, gfem® In| lig tan(d) lig

3 3.80e+ 06 1 1 Ter33

Figure 6: Bulk and sensor parameters.

Bulk and sensor parameters (Figure 6) include the fundamental frequency f,, acoustic impedance of the
resonator material Z, and the viscoelastic properties of bulk liquid, specified as 1|, tan(5). By default,

the fundamental frequency is set to 5 MHz, the acoustic impedance—to that of quartz, and bulk liquid
parameters to those of water. Bulk liquid density is 1 g/cm? and cannot be modified.

Sphere(s) parameters (Figure 7).

Sphere Parameters

Loop Start Stop Steps Spheres Plot
P glem® [135 1.35 1
Radius, nm [~ 5.00 5.00 1 5
Truncation [0.00 0.00 1 ¢
MNumber [~ 1 1 1 3
Il MV | 1.00e+04 | 1.00e+04 1 2
tan(8&) v 0.10 0.10 1
B - 0.00 0.00 1 1
B - 0.00 0.00 1 '
Coverage |v 0.30 0.10 2

Figure 7: Sphere parameters.

The parameters defining the sphere(s) include density, radius, degree of truncation, the number of spheres
per unit cell, viscoelastic properties specified according to the format selected in the Simulation
Parameters frame, and coverage. Furthermore, here the user can select the parameters which are looped,
the starting and the ending values of the parameters in a loop, and the number of steps on a linear scale.
To the right, there is a plot of the simulation cell with the vertical scale in nm. The appearance of the plot
will depend on the grid resolution, the radius, truncation, and number of spheres. The time to update the
plot will depend on the grid resolution.

Most of these parameters are self-explanatory. Special attention is drawn to the truncation, which is
specified on a scale of 0 — 1, where 0 corresponds to half-spheres (50% truncation) and 1 corresponds to
full spheres and 0% truncation), or

%truncation = (1 — truncation)/2*100, and the height, # = radius*(1 + truncation).

The height corresponds to 2x sphere radius when truncation is 1 and % truncation is zero, and to 1x
sphere radius when truncation is 0 and % truncation is 50%.

For the viscoelastic parameters, the limits on the exponents are specified under the Limits menu. Limits
do not apply to the Maxwell format, and the Limits menu is disabled when Maxwell format is selected.

In the case of multiple spheres, sphere positioning may fail at high coverages (~ 0.45).
Menu

The File menu contains functions relating to saving and opening simulation parameters, making the
current set of simulation parameters default, and re-setting the simulation parameters to the values that are
hard-coded in the IO library. The hard-coded simulation parameters are “safe” in the sense that they will
not lead to a simulation hanging or crashing. Limits offers the possibility on adjusting the limits of the
viscoelastic exponents, while Advanced SimPars (Figure 8) allow the user to modify the parameters that
control ring-in convergence, smoothing, and selecting the collision operator A.2 Hovering the mouse over
the parameters will display suggested values.

Advanced Simulation Parameters

UpdateMotionFac TargetSlopeFitResults PrintintervalFac max(t/t_Rl) ATRT
0.02 0.1 2 100 [14 ~
SigSmoothDfcbynsFac
0.01

Figure 8: Advanced Simulation Parameters

DispalySimResults will open a window where results of simulations can be displayed.

Help displays About information and this document.

2 Kriiger, T. et al. The Lattice Boltzmann Method: Principles and Practice. (Springer International Publishing, Cham,
2017). d0i:10.1007/978-3-319-44649-3, page 429.

https://doi.org/10.1007/978-3-319-44649-3

5.2 Wrapper

SPs['ProblemType'] = 'StiffParticles’
SPs['Dx_nm"'] =3

RSph_nms = np.array([5])
ySphbyRs = np.array([0.0])
CovTargets = np.array([0.3,0.1])
ns = np.array([7])
rhoSphs = np.array([1])
etaabscenSphmPass = np.array([led4])
tandelcenSphs = np.array([0.1])
Jp_FacSphs = np.array{([10])
Jpp_FacSphs = np.array([10])

Parsl etaabscenSphmPass; SPs['Parlstr'] 'etaabscenSphmPas ' ;

Pars2
Pars3

tandelcenSphs; SPs['Par2str']
CovTargets; SPs['Par3str']

'tandelcenSph';
'CovTarget'

SPs['folder'] = 'test’
SPs['fnamed'] = 'test’
SPs['Do_from GUI'] = False

Figure 9: Editing simulation parameters in the wrapper

When using the wrapper, Main_FreqDLBM.py, the simulation parameters (SPs) are edited directly in the
python code, as shown in Figure 9. For example, problem type is selected by assigning a value
“StiffParticles” or “SoftParticles” to the parameter SPs['ProblemType']. Sphere radius, which is set to 5
nm in Figure 9, can be changed by changing “5” to any other desired value greater than zero, and so on.

Parameters to be iterated over in the simulation are created by including multiple values in the square
brackets, like it is done with CovTargets in Figure 9: CovTargets = np.array([0.3,0.1]): this simulation
will run at two coverages, 0.1 and 0.3. One advantage of using the wrapper is that logarithmic spacing can
be used for parameters to be iterated over. For example, |n| can be set to 1e4, 1e3, 1e2, etc.:
etaabscenSphmPass = np.array([1e4, 1e3, 1¢2]). This feature is not yet implemented in the GUI.

It is important to match the iteration parameters to their names by setting Pars1, Pars2, and Pars3
variables, and the corresponding SPs, to the appropriate parameter names. In Figure 9, parameters to
iterate over are coverage, ||, and tan(§), while the choice of viscoelastic parameters is specified by
setting the value of SPs['VEPars_Choice'] (not shown in Figure 9, it appears in line 57 of the wrapper). To
iterate over a different set of parameters, one needs to include multiple values for the parameter in
question as well as change the values of one of Parsi and SPs[Paristr]|, where i is 1, 2, or 3, to correspond
with it. Do not assign multiple values to parameters that are not iterated over.

The grid resolution is set by adjusting the value of SPs['Dx_nm']. In Figure 9, it is set to 3 nm. It is
recommended that it is set to 1/5" of the radius of the sphere.

It is important to keep SPs['Do_from GUI'] = False.

SPs['folder'] = 'test' and SPs['fhame0'] = 'test' set the subfolder and the file name prefix for placing
simulation results.

The values of SPs in the wrapper have no effect on the functioning of the GUI or on the simulation run
from the GUI.

6. Simulation Results

Simulation results are collected in three files. In the case of the simulations run from the GUI, they are
named FreqD-LBM-Output yyyy-mm-dd-hh mm_ss.txt, .cfg, and _Aux.txt, respectively. The date and
time match those of the .npy file containing simulation parameters. In the case of the simulation run from
the wrapper, the prefix of the file names is specified by the SPs['fname('] parameter, followed by _yyyy-
mm-dd-hh_mm_ss, followed by .txt, .cfg, and Aux.txt.

Simulation results can be viewed using DisplaySimResults menu option in the GUI that becomes
available upon completion of the simulation. This option will work for simulations run from the GUI as
well as from the wrapper. Further analysis of the results can be performed using external software.

Simulation results can also be viewed using Main_FreqDLBM _Display Results.py utility run from
Spyder by setting the parameter fname to the path and file name of the simulation results file.

7. Limitations, acceleration, and other considerations.

Access to several problem types mentioned in the FLBM paper that can be addressed with these
simulations have not yet been implemented in the GUI. In some instances, they can be accessed through
the wrapper, however, the code has only been tested StiffParticles and SoftParticles.

Acceleration is mostly done with numba. A command of the form @jit(nopython = True) switches numba
on. The respective routine is translated to C-code when it is called first. Those routines must not make
use of dictionaries (like SPs). There are quite a few instructions from numpy, which numba does not
tolerate. Numba is a bit particular about data types. When numba throws error messages concerning data
types, debugging is cumbersome.

Most importantly: Those routines do know of global parameters, but these are not updated, when the
routine is called repeatedly (and there is no error message). If the routine is part of a loop, the parameter,
which is looped over, must be part of the arguments of the call. If not, the routine keeps using the value,
which it found when it was called for the first time.

We believe that FreqD-LBM can be faster, when the np.roll command is used in the streaming step. We
did not succeed in getting that to work reliably. If someone can do that ...he or she will serve the
community.

