
 
 
 
 
 
 
 
 
 
 

Frequency-Domain Lattice Boltzmann (FreqD-LBM) 

Simulation Software 

Quick Reference Guide 

1. Scope. 

The software implements frequency-domain lattice-Boltzmann simulation method described in the article 

The Frequency-Domain Lattice Boltzmann Method (FreqD-LBM): A Versatile Tool to Predict the QCM 

Response Induced by Structured Samples by Diethelm Johannsmann, Paul Häusner, Arne Langhoff, 

Christian Leppin, Ilya Reviakine, and Viktor Vanoppen. The paper currently is under review. It is referred 

to in this manual as the “FLBM paper”. The details of the method and its applications are explained in the 

article. Here, the focus is on how to use the software in practice. 

The software is written in Python.   

FreqD-LBM is an open-source software under MIT license (en.wikipedia.org/wiki/MIT_License) 

2. Requirements 

The software has been tested in Python 3.9 and 3.11.5 on personal computers running Windows 10 and 

Windows 11. It requires the pandas, numpy, matplotlib, scipy, tkinter, numba, lmfit, configparser, queue, 

and tooltip libraries, which are not native Python libraries, so they are not by default included in the 

standard Python distribution and must be installed separately. The authors recommend using the anaconda 

python distribution (available from https://www.anaconda.com/download) and installing the requirements 

by running the setup.py script. This will install the pip package manager and all necessary libraries.  If 

you encounter any problems installing pip, please refer to the pip documentation 

(https://pip.pypa.io/en/stable/installation/#get-pip-py). In case of specific errors during the installation of 

certain necessary libraries, please refer to the documentation of the individual library. A missing library 

can also be installed (if pip is already installed) by typing pip install  <library name> in the console. An 

Internet connection is required. 

3. Software Organization 

The software consists of three parts (Fig. 1): the core libraries (collected under \Lib) that can be accessed 

via a GUI (FLBM.py, fblmn.py, fblmpar.py) or via a wrapper (Main_FreqDLBM.py). The GUI helps the 

user define simulation parameters (SPs). In the case of the wrapper (Main_FreqDLBM), the user 

directly edits the code defining the SPs. SPs are then passed to the simulation core (SingleSim). In the 

case of the GUI, SPs are passed to the simulation via a file that is named <yyy-mm-dd-

hh_mm_ss.flbmsym.npy> stored in the default simulation subfolder (flbm) or in the folder of the user’s 

choice. The user has the option to run the simulation in a serial or in a parallel mode. The file with the 
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simulation parameters is saved and can be used to re-run the exact same simulation if desired. This is 

accomplished by using the command  

“python fblmn.py flbm\yyy-mm-dd-hh_mm_ss.flbmsym.npy” (in serial mode) 

or 

“python fblmpar.py flbm\yyy-mm-dd-hh_mm_ss.flbmsym.npy” (in parallel mode). 

(assuming the default location). The wrapper directly passes SPs to SingleSim and runs in a serial mode 

only. Both the GUI and the wrapper have provisions for displaying simulation progress plots (see below). 

In the GUI, there is also an option to display simulation results.  

 

  

Figure 1: Software Organization 
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4. Running the software 

The software can be run from the command line by typing “python FLBM.py” in the folder containing the 

FLBM.py file.  

The software can also be run from within 

Spyder. For the GUI version, load 

FLBM.py into Spyder, and configure 

external shell execution (in the Spyder 

main menu, press “Run” and 

“Configuration per file”; then select “Run 

file with custom configuration” and 

“execute in an external system console”.  

The wrapper, Main_FreqDLBM.py, can 

be run directly from Spyder, but the GUI 

cannot.  

5. Defining simulation 

parameters. 

5.1 GUI 

Basic simulation parameters are grouped 

into frames: the parameters that apply to the entire simulation (Figure 3), bulk and resonator parameters 

(Figure 6), and sphere(s) parameters (Figure 7). Furthermore, there is a set of advanced parameters that 

can be accessed through the menu “Advanced SimPars”. 

 

Problem Type: Currently implemented are the simulations of “soft spheres” modelled as regions of 

increased shear stiffness, and “stiff spheres” modelled as oscillating boundaries. The implementation of 

roughness, film resonance, etc., are left for the future. 

Format: Specifies how the viscoelasticity of the sphere/surface contact is defined. Three options are 

available: |𝜂|, tan⁡(𝛿) or 𝐽′, 𝐽′′ with their corresponding exponents, 𝛽′, 𝛽′′, and Maxwell, with |𝜂|, 𝜏. 

Figure 3: Simulation Parameters frame 

Figure 2: Configuring Spyder for running FLBM in an external shell. 
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Viscoelastic parameters have their usual meaning (see 1). In 

the case of the format specified by Maxwell formalism, |𝜂| 

is used to calculate shear elastic modulus at infinite 

frequency, while the relaxation time 𝜏 separates frequency 

ranges with  liquid-like from ranges with solid-like 

behavior (Fig. 4). 

Grid Factor: simulation grid resolution in fractions of the 

sphere radius, Rsph. The recommended value is 5, but a 

value of 3 is sufficient for approximate simulations. Grid 

resolution in nm is displayed in the adjacent field. 

Averages: the number of times the simulation is repeated with different particle positions in the 

simulation box. The recommended number is 5.  

Overtones to be included in the simulation. At least one overtone is required. 

Simulation type (SimType): Regular or Parallel. For Parallel simulations, the choice to display progress 

plots is also offered. This is useful for diagnostics but this option is currently slow. It is recommended that 

parallel simulations are run without progress plots. Progress plot files are saved in the tmpplot subfolder 

and can be accessed at a later time. In the future, a separate display option for browsing those plots will be 

implemented. 

Run simulation button will start the simulation in a new console. A file containing simulation parameters 

is created, that is named <yyy-mm-dd-hh_mm_ss.flbmsym.npy>. It is stored in the default simulation 

subfolder (flbm) or in the folder of the user’s choice. It is passed to flbmsym.py or flbmsympar.py 

depending on whether the simulation is run in the serial mode or in the parallel mode. The progress of 

simulation is monitored in the Simulation Progress frame that opens at the bottom of the GUI window 

(Figure 5), and the plots frame to the right. The plots frame will display the ring-in process plots, sphere 

motional parameter plots, and, finally, the velocity and density profiles, such as those shown in Figure 3.4 

and Figure 3.5 of the FLBM paper. Simulation parameters of the current step are displayed above each 

plot. 

                                                           
1 Johannsmann, D. Viscoelastic analysis of organic thin films on quartz resonators. Macromol. Chem. Phys. 200, 

501–516 (1999); Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research. (Springer Berlin 

Heidelberg, New York, NY, 2014). 

 

Figure 4: Maxwell  viscoelasticity format 

Figure 5: Simulation Progress frame. 
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In the case of the simulations run in parallel, the number of simultaneously running simulations depends 

on the number of processor cores. Only one of them can be selected for plotting at any given time, 

selected using a radio button in the Simulation Progress frame (Figure 5). 

The file with the simulation parameters can be used to re-run the exact same simulation if desired. This is 

accomplished by using the command  

“python fblmn.py flbm\ yyy-mm-dd-hh_mm_ss.flbmsym.npy” (in serial mode) 

or 

“python fblmpar.py flbm\ yyy-mm-dd-hh_mm_ss.flbmsym.npy” (in parallel mode). 

Bulk and sensor parameters (Figure 6) include the fundamental frequency 𝑓0, acoustic impedance of the 

resonator material 𝑍𝑞 and the viscoelastic properties of bulk liquid, specified as |𝜂|, tan⁡(𝛿). By default, 

the fundamental frequency is set to 5 MHz, the acoustic impedance—to that of quartz, and bulk liquid 

parameters to those of water. Bulk liquid density is 1 g/cm2 and cannot be modified. 

Sphere(s) parameters (Figure 7). 

The parameters defining the sphere(s) include density, radius, degree of truncation, the number of spheres 

per unit cell, viscoelastic properties specified according to the format selected in the Simulation 

Parameters frame, and coverage. Furthermore, here the user can select the parameters which are looped, 

the starting and the ending values of the parameters in a loop, and the number of steps on a linear scale. 

To the right, there is a plot of the simulation cell with the vertical scale in nm. The appearance of the plot 

will depend on the grid resolution, the radius, truncation, and number of spheres. The time to update the 

plot will depend on the grid resolution.  

Figure 6: Bulk and sensor parameters. 

Figure 7: Sphere parameters. 
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Most of these parameters are self-explanatory. Special attention is drawn to the truncation, which is 

specified on a scale of 0 – 1, where 0 corresponds to half-spheres (50% truncation) and 1 corresponds to 

full spheres and 0% truncation), or  

%truncation = (1 – truncation)/2*100, and the height, h = radius*(1 + truncation). 

The height corresponds to 2x sphere radius when truncation is 1 and % truncation is zero, and to 1x 

sphere radius when truncation is 0 and % truncation is 50%. 

For the viscoelastic parameters, the limits on the exponents are specified under the Limits menu. Limits 

do not apply to the Maxwell format, and the Limits menu is disabled when Maxwell format is selected. 

In the case of multiple spheres, sphere positioning may fail at high coverages (~ 0.45).  

Menu 

The File menu contains functions relating to saving and opening simulation parameters, making the 

current set of simulation parameters default, and re-setting the simulation parameters to the values that are 

hard-coded in the IO library. The hard-coded simulation parameters are “safe” in the sense that they will 

not lead to a simulation hanging or crashing. Limits offers the possibility on adjusting the limits of the 

viscoelastic exponents, while Advanced SimPars (Figure 8) allow the user to modify the parameters that 

control ring-in convergence, smoothing, and selecting the collision operator Λ.2 Hovering the mouse over 

the parameters will display suggested values. 

DispalySimResults will open a window where results of simulations can be displayed.  

Help displays About information and this document. 

                                                           
2 Krüger, T. et al. The Lattice Boltzmann Method: Principles and Practice. (Springer International Publishing, Cham, 
2017). doi:10.1007/978-3-319-44649-3, page 429. 
 

Figure 8: Advanced Simulation Parameters 

https://doi.org/10.1007/978-3-319-44649-3
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5.2 Wrapper 

When using the wrapper, Main_FreqDLBM.py, the simulation parameters (SPs) are edited directly in the 

python code, as shown in Figure 9. For example, problem type is selected by assigning a value 

“StiffParticles” or “SoftParticles” to the parameter SPs['ProblemType'].  Sphere radius, which is set to 5 

nm in Figure 9, can be changed by changing “5” to any other desired value greater than zero, and so on. 

Parameters to be iterated over in the simulation are created by including multiple values in the square 

brackets, like it is done with CovTargets in Figure 9: CovTargets = np.array([0.3,0.1]): this simulation 

will run at two coverages, 0.1 and 0.3. One advantage of using the wrapper is that logarithmic spacing can 

be used for parameters to be iterated over. For example, |𝜂| can be set to 1e4, 1e3, 1e2, etc.: 

etaabscenSphmPass = np.array([1e4, 1e3, 1e2]). This feature is not yet implemented in the GUI. 

It is important to match the iteration parameters to their names by setting Pars1, Pars2, and Pars3 

variables, and the corresponding SPs, to the appropriate parameter names. In Figure 9, parameters to 

iterate over are coverage, |𝜂|, and tan⁡(𝛿), while the choice of viscoelastic parameters is specified by 

setting the value of SPs['VEPars_Choice'] (not shown in Figure 9, it appears in line 57 of the wrapper). To 

iterate over a different set of parameters, one needs to include multiple values for the parameter in 

question as well as change the values of one of Parsi and SPs[Paristr], where i is 1, 2, or 3, to correspond 

with it. Do not assign multiple values to parameters that are not iterated over. 

The grid resolution is set by adjusting the value of SPs['Dx_nm']. In Figure 9, it is set to 3 nm. It is 

recommended that it is set to 1/5th of the radius of the sphere.  

It is important to keep SPs['Do_from_GUI'] = False.  

SPs['folder'] = 'test' and SPs['fname0'] = 'test' set the subfolder and the file name prefix for placing 

simulation results. 

Figure 9: Editing simulation parameters in the wrapper 
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The values of SPs in the wrapper have no effect on the functioning of the GUI or on the simulation run 

from the GUI.  

6. Simulation Results 

Simulation results are collected in three files. In the case of the simulations run from the GUI, they are 

named FreqD-LBM-Output_yyyy-mm-dd-hh_mm_ss.txt, .cfg, and _Aux.txt, respectively. The date and 

time match those of the .npy file containing simulation parameters. In the case of the simulation run from 

the wrapper, the prefix of the file names is specified by the SPs['fname0'] parameter, followed by _yyyy-

mm-dd-hh_mm_ss, followed by .txt, .cfg, and _Aux.txt.  

Simulation results can be viewed using DisplaySimResults menu option in the GUI that becomes 

available upon completion of the simulation. This option will work for simulations run from the GUI as 

well as from the wrapper. Further analysis of the results can be performed using external software.  

Simulation results can also be viewed using Main_FreqDLBM_Display_Results.py utility run from 

Spyder by setting the parameter fname to the path and file name of the simulation results file. 

7. Limitations, acceleration, and other considerations. 

Access to several problem types mentioned in the FLBM paper that can be addressed with these 

simulations have not yet been implemented in the GUI. In some instances, they can be accessed through 

the wrapper, however, the code has only been tested StiffParticles and SoftParticles. 

Acceleration is mostly done with numba.  A command of the form @jit(nopython = True) switches numba 

on. The respective routine is translated to C-code when it is called first.  Those routines must not make 

use of dictionaries (like SPs).  There are quite a few instructions from numpy, which numba does not 

tolerate.  Numba is a bit particular about data types.  When numba throws error messages concerning data 

types, debugging is cumbersome.  

Most importantly:  Those routines do know of global parameters, but these are not updated, when the 

routine is called repeatedly (and there is no error message). If the routine is part of a loop, the parameter, 

which is looped over, must be part of the arguments of the call. If not, the routine keeps using the value, 

which it found when it was called for the first time. 

We believe that FreqD-LBM can be faster, when the np.roll command is used in the streaming step.  We 

did not succeed in getting that to work reliably.  If someone can do that …he or she will serve the 

community. 


